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The subspaces G,, G”, and G {a, $20) of Schwartz’ space S° in {0, + ) are
associated with the Hankel transform in the same way as the Gelfand-Shilov
spaces S,, S# and S’ are associated with the Fourier transform. Indeed,
if we consider the Hankel transform H .  (y> —1) defined by #.(/f)(1)=
gy 2 x'*‘Jl(\;",\'r)f(A\')dx then , is an isomorphism from G,, G*, and G/
onto G*. G, and G}, respectively. So, the spaces G are invariant for .. In this
paper, we characterize the spaces G2 (a2 1) in terms of their Fourier-Laguerre
coefficients. Also, we characterize the range of the Fourier-Laplace operator #,

defined by Z,()w)=f, flrye 20ty for weD={weC:|wl<1}
when it acts on the space G, ¢ 1993 Academic Press, Inc.

1. INTRODUCTION

The spaces of type S (S,. S”, and S#) were introduced by 1. M. Gel'fand
and G. E. Shilov to extend the Fourier transform to a class of functionals
larger than that of tempered distributions. Their topological duals (tem-
pered ultradistribution spaces) have been successfully used in Cauchy
problems, in differential operator theory, and also in spectral analysis (see
[GS1], [GS2]).

In order for a function f to belong to these spaces, the order in & and
p of sup,_g [15/'7'(¢)] is forced to be bounded by a double fixed sequence:
sequences of types C,A*k™, C, B’p"”, and CA*B’k*p’" for the spaces S,,
S*, and S*, respectively.

The spaces S? are the most important of them, because as Schwartz
space S, they are invariant under the Fourier transform. All these spaces
have been characterized in terms of the Fourier-Hermite coeflicients.
Hermite orthogonal system and Fourier transform are related to each other
because the functions of this orthonormal system are the eigenfunctions for
the Fourier transform. Here, it is worthwhile to mention the theory of the
Fourier transform developed by Korevaar from the point of view of
Hermite expansions [K].
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L. Schwartz [S] proved that a function is in the space S if and only if
its sequence of Fourier-Hermite coefficients is a rapidly decreasing
sequence. Several authors have proved (see, e.g., [A], [EG]) that a func-
tion f belongs to S if and only if there exist two constants ¢ >0, a> 1
such that its sequence of Fourier-Hermite coefficients satisfies

N
al 2

la,| <ca for n=0.

Let us consider the transform analogous to the Fourier transform for the
positive real hine (0,+c0), that is, the Hankel-Clifford transform %
defined by

. [
Aol WD =3 |

“0

AN

and the Laguerre orthonormal system (L,(t)e “?), (here, L,(t) are the
Laguerre polynomials) in L2(0, +oc ). As in the previous case, the functions
L,(t)e “? are eigenfunctions for the Hankel-Clifford transform.

The Hankel-Clifford transform is an isomorphism from the Schwartz
space defined in (0, +oc) (denoted by S*) onto itself, and it has been
proved (see [D1], [Gu], [Z]) that as for the space S, a function in the
space S* is characterized because its Fourier-Laguerre sequence i1s a
rapidly decreasing one.

Recently, the author [D2] introduced the subspaces G,, G”, and G/ of
the Schwartz space S*. They are associated with the Hankel-Clifford
transform in the same way as the Gel'fand-Shilov spaces are associated
with the Fourier transform. Thus, the spaces G are invariant under the
Hankel-Clifford transform.

A natural question arises:

QUESTION 1. What happens with the Fourier—Laguerre coefficients in
these spaces?

Let us note that for 1 <a <2 this question has been solved. Indeed, in

[D2], we proved that the spaces G* are very related to the spaces S%3.
More precisely

Gi={f/(J1): €57 cen)

(here, X..., denotes the subspace of the even functions which belong to X).
Hence, our question is equivalent to the following: (see [EG]):

QUESTION 2. What happens with the Fourier coefficients in the spaces
S*3 with respect to the orthonormal system (ﬁL,,(.\“’) e 7

2. even

S.J.L. van Eijndhoven and ). de Graafl proved in [EG] that, for
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1 <x<2, a function f belongs to the space S*3 ..., if and only if there
exist two constants ¢ >0, ¢ > 1 such that

b

la,| <ca " for n>=0,

where (a,), is the Fourier sequence (with respect to (\/iL,,(xz) e ) of
the function f.

Also, in [D3], the answer to Question | for x=1 ¢an be found.

As the main result of this paper, we give a complete answer to
Question | (and so to Question 2) (Section 3). We prove that (as for the
space S7) in order for a function to belong to the space G (for a> 1) it
is neccessary and sufficient that there exist two constants, ¢ >0, ¢ > | such
that its sequence of Fourier Laguerre coefficients satisfies

ot

la,| < ca for n=0.

We extend this result for the generalized Laguerre orthonormal system
and for the dual space (G2

Two integral transforms play a fundamental role in the proof of these
results. One of them is the above-mentioned Hankel-Clifford transform.
The other is the Fourier-Laplace type of operator %, defined by

x

.#‘,,(f)(w)zj S(rye ot nrge o for weD.  (1.1)
(0]
We characterize the range of the operator %, acting in the space G?.

In [D2], we stated the relation between our spaces of type G and the
Gel'fand-Shilov spaces defined on {0, +oc). In particular, we proved that
G,=S} for x>0 and that G = S*#~! for > 1. To complete this paper
(Section 4), we prove (from an exhaustive study of the operator .%#,) that
the above result is the best possible; that is, G/ is always different from the
space ST# !, and S*# ' is the smallest space of type S*7, which contains
the space G*.

Notations. As usual R, C, and N denote real, complex, and nonnegative
integer numbers. We write C™ for the space of complex sequences. Given
a complex number z, its real and imaginary parts are denoted by Rz and
3z, respectively. Finally, J, and I, denote the Bessel functions of the first
kind and the Bessel functions of the imaginary argument, respectively.

2. PRELIMINARIES
To begin with, we give the definitions of the spaces S*, G,, G”, and G?,
for o, $20.
S*={fe%"((0,+cc)): Yk p=0,3C, ,>0,
sup [/ () < Cy )

>0
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Ga(:{fES+ ZHA, C,,)O, Vk, pZO!
sup |1(k+p)s‘2 RS CpAkklau:lk}

>0

G!={feS*:3B, C,>0, Yk, p=0,
sup !,(k+m;‘2flp|(1)l < C}(Bpp(/f,Z)p}

t>0

Gi={feS*:34, B, C>0,Vk, p=0,
sup iﬂk#—p)lf‘(p)(,)lgCAkBpku E)kptlfl)/)}.

>0

We endow the spaces G,, G”, and G* with the obvious inductive limit
topology (see Section 2 of [D2]).

We briefly comment on some properties of these spaces which we use in
this paper.

Here, we introduce spaces of type G using |-}, norm. In [D2], we used
-5, but as we noted in Note 2.2(a) of [D2], both |||, and |||, norms
give the same spaces.

As for spaces of type S (see [Ka]l), we proved that G/=G,nG”
Moreover, in order for fe G#, it is enough that feS* and there exist
constants 4, B, C >0 such that

152 f ()], < CAKD%  for k=0

| (2.1)
|72 (), S CBpPR? - for p>0

(see the proof of Lemma 3.4 in [D2]).

The spaces G,, G" are closed under differentiation and multiplication by
t (see part(d) of Note 2.2 and Lemma 3.3 in [D2]). As G! =G, NG, it
follows that the space G# has the same property.

As we wrote in the Introduction, the spaces are associated with the
Hankel-Clifford transform in the same way as the Gel'fand-Shilov spaces
are associated with the Fourier transform. We state this result in the
following (Theorem 3.5 of [D2]):

THEOREM A. The Hankel-Clifford transform 5, (y > —1) defined by

1

AN =3 [7 o) 7200, (f50) f0) d

is an isomorphism from the spaces G,, G’, and G’ onto G*, G, and G},
respectively. Hence, the space G2 is invariant for this transform. ||
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We recall that the key in the proof of Theorem A is the formula (see
Lemma 3.2 of [D2])

LR R =2 PR R S, (22)

which we also use in this paper.
Let us introduce the so-called fractional power of the Hankel-Clifford
transform .. .. L*((0, + ), 17 dr)— L*((0, +c), 17 dr) defined by

N (f)([): ! e L2000+ 2000 20
RN l‘:

2 2tz
x'[ e (VAMLFIU NN (xyz) "'zx""l.( VAl )f(.\’)dx
0 ! l—:z
(where z€C, |z| =1, =# 1), which is an isometry from L>((0, +x ), " dt)
onto itself.
The Hankel-Clifford transform can be obtained by putting -= —1 in

this formula. In [ D2, Theorem 3.57], we proved that this transform is an
isomorphism from the space G onto itself. However, this transform is not
so well behaved when acting on the other spaces of type G. Indeed, if we
put @ (1) =!I N then:

THEOREM B. The fractional power of the Hankel-Clifford transform ¥,
is an isomorphism from G_onto ®. .G*={®_ . f(1): feG*}. 1]

In the last section of this paper, we prove that the space G* is always
different from the space @. G~

As we said in the Introduction, Question 1 was solved in [D3] for x = 1.
Indeed, the space G| is the same as the space S, ° which was thoroughly
studied in {D3] (see the last section for the definition of S;"). The dual
of the space S;'° is especially important in relation to the Fourier-Laplace
operator (1.1). Indeed, (S;"°) is the largest space where this operator can
be defined so that its range consists of analytic functions on the unit
disc. In [D3], we proved that for every analytic function F in D, there
exists a unique functional « in (S,°)" such that F(w)=%,(u)(w)=
<u(,)‘ e (L2)U1 + w)il - n‘b)r>'

As the fractional power of the Hankel-Clifford transform .4  is an
isomorphism from the space S,;'°=G| onto itself, by dualizing, we can
extend this transform to the space (S;°). We show that there is a close
relation between the transform £ , and %, Indeed, for a functional
ue(S;°), the function which we obtain from the analytic function
Fn(u)(w) by doing a rotation of angle p in the variable w is almost the
same as the function which we obtain by applying the operator %, to
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the functional .#,, ,(u) (see Lemma 3.4 of this paper for a more precise
formulation of this relation).

Let us consider the generalized Laguerre orthonormal system in
L0, +0c), t"dty (7> —1), that is,

Fnty+ 1) 172
y;;(z):(h—(”:;+ )) Li(t)e 2,

where LI(t) are the Laguerre polynomials.

It is well known that the functions in this orthogonal system are eigen-
functions for the Hankel-Clifford transform, more precisely, (< (1)) =
(=) (D(n+7y+ )/l 220

Next, we give an estimate of the Laguerre polynomials which we will
need to establish a sufficient condition for a sequence to be the sequence of
Fourier-Laguerre coefficients of a function in the space GZ.

In [D4], we proved the following bounds on the Laguerre polynomials
and their derivatives:

If k&, p, neN, 120, and y =20 then

2 inte kg ax(y —k, 0
|tk(L~:7(t)e '”—)(p]|<2 mlnl,'./\)4k(n+I).._(n+k)('1+p+mdx(l ))
n

(2.3)

and we stated that these bounds are sharp.

However, using the fact that the functions in the Laguerre orthonormal
system are eigenfunctions for the Hankel-Clifford transform and the
formula (2.2), these bounds can be improved for certain values of k& and p.

Indeed, taking in these bounds k = p/2, and for p = 2y, we get

PALi() e )P < 27(n + 1)---<n+ [g] + 1)(":")‘

(Here, [x] denotes the integral part of the real number x.) Note that the
order in n in these bounds is n*”>*' We prove that actually, the order in
n can be taken to be n”? 4+

LemMma 2.1. If p,neN, 120, and 7 =0, then

|PA(Lir) e )

<32(p+4)(n+1)-~(u+[§}+3>(n+1)(":"). (24)
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Proof. We first prove the lemma for y =0. Indeed, from (2.3), we get

J7 L (1) e )R

<271 (n{p;k}u)(":k). (2.5)

Since H5(L, (1) e ')=(—1)" Lt)e" “2, from (2.2) and (2.5), we get

I L (1) e )P = R L (1) e 7))
=2 PR L (e YR

<2~4"”(n+1)---<n+[£ﬂ]+2>(n+k>.
2 n

(2.6)
Hence, using the Holder inequality, we get

|tP2(L, (1) e ") P <32(p+4)(n+ 1)'--<n + [g] + 3) (n+1)

Now, using

"oy —1
Z ( +} )Lnl(t)

we have
ALy e ")

<32(P+4)("+1)--~(n+[§]+3) (n+1)<n:y)

and the lemma is proved. ||

3. FOURIER-LAGUERRE COEFFICIENTS IN THE SPACE G}

In this section, we characterize the space G (¢>1) in terms of the
Fourier-Laguerre coefficients. To begin with, we give a sufficient condition
on the Fourier-Laguerre coefficients of a function f so that this function is
in the space G2.

LEMMA 3.1. Let fe L*(0,+c)anda > 1, weputa,=[§ f(1) L,(t)e " dr
for its Fourier—Laguerre coefficients. If there exist constants ¢ > 0 and a > 1
such that

la,| <ca ™" for nz0 (3.1)

then fe G5
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Proof. From (2.1), it is enough to prove that the function f belongs to
the space S * and satisfies

HA2f () < CAK*42 for k>0
and
172f Py, < CBp*»®  for p>0 (3.2)

for certain constants 4, B, C>0.

As (a,), is a rapidly decreasing sequence, it follows that fe S*.

Now, taking into account that a> 1, it follows that a ~""*< M ¥q " +*1"*
for x =0 and for a certain constant M > 0 which only depends on a, hence,
from (2.5) and (3.1), we get

1= |

Y a,*?L(t)e ?
”n

2

SZ IanI Htkﬁzl‘n(t)e ""“2‘[2

L

Sczanllzk(n+1)...<n+|:§:|+2)

SAMHIIDY g <n+[k2]+21"<n+[g]+2)l[k2]+2). (3.3)

n

But the function p, (x)=v “* " (x+u)*(«=0, v>1) attains its
maximum value on the interval (—u, +00) at the point x = (au/log v)* — u.
Hence, from (3.3) we get

120l < CAMKI=4

for certain constants C, 4> 0.
From (2.6), the inequality (3.2) can be proved in the same way. |

The rest of this section is devoted to proving that actually, the sufficient
condition stated in Lemma 3.1 is also necessary.

To prove this result, we study the behaviour of the Fourier-Laplace
operator defined by

Fo W)= [ fye Mg o weD  (34)

in the space G;.
Why is it interesting to study this operator? Given a function
fe L*0,+w), there exists a closed relation between the function %, (f)
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and the Fourier-Laguerre coefficients of f. Indeed, the Fourier-Laguerre
coefficients of f are almost the Taylor coefficients of the analytic function
F,(f). This result is also true for the space (S} °) (see Proposition 3.2 of
[D3]):

TueoreM C. Let ue(S,'°Y and a,={u, L, (t)e “*>. Then

«;”.,)(l/l)(‘v\‘)z (1 —w) Z a,w'".

”n

In view of this theorem, it will be interesting to have a characterization
of the analytic functions on the unit disc whose sequence of Taylor coef-
ficients (a, ), satisfies (3.1) for certain constants ¢ >0 and a> 1:

LEMMA 3.2. Let Fe H(D) and a2 0. If we put Flw)=(1—w) Y, a,w”,
then the following conditions are equivalent:

(1) There exist constants C, A >0 such that
[F'P(w)| £ CAPp™ for p=0 (3.5)

and for we D.
(it) There exist constants ¢ >0, a> 1 such that

‘an| <('a " for n?O

Proof. We write F(w)=3__ b,w", where b,=a,—a, , (a_,=0).

(i) — (ii). Since F7(w)=3
the hypothesis, we get

nn—1)---(n—p+1)b,w" "7, from

nzp

Inn—1)---(n—p+1})b,| <CA”p*” for nzp.

Since n(n—1).---(n—p+ 1)=2e "n” for n= p, we have

bl < C inf {M}. (3.6)

p.op<n n"’

We can assume that the constant 4 is greater than 1. Then, if p > n the
number (eA)” p*/n® is greater than (e4)” n*"/n", and so the infimum in
(3.6) can be taken varying on p>0. Thus, from (2) and (3) in [GS1,
pp. 169-170], we have

A) p*r I
|6, < C inf {(—%E—}sca’"

p=20
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for certain constants ¢ >0 and a> 1. Now, (i} — (ii) follows because

n
a,= Y b,.
£Z0

(it) — (i). Indeed, since F'"'(w) =%, ., nn —1) - (n —p + 1)
(a,—a, yw" 7, we get

|FIP(w)l €2C Z na "
But the function p(x)= x"u i (u>1) attains its maximum value on the
interval (0, +oc) at the point x = (ap/log u)*. Now, it is easy to finish the
proof. |

Hence, we must prove that if a function f belongs to the space G3, then
the analytic function %, (/) satisfies part(i) of the previous lemma.
The following theorem is a first step in this proof.

THEOREM 3.3. Let feG, and a2 0. Then there exist constants C, A>0
such that if we D and Rw <0, then

UFL (N7 (W)l < CAPp™

for all p=0.

Proof. From (3.4) and using the chain rule for higher derivatives (see
[Sc. p. 12]), we get

ro(—1)k & k
(Fp) 7 ()w) =} (k!) 2 (= (m)

P m=1
I 14+w\e ™ ((1 1+w)"‘>‘”’

(! 1
21—w 21-w

xjhx (— 1) flrye MRMIwI e gy (3.7)
0

For |w| <1 and Rw <0, we have

14+w
<1
1 —w

By induction on m, it can be proved that
A\ ) My o _
( 1+n> ) <2 m---(m+p—1)
1—w

‘m+p

for weD. (3.8)

~

[T —w
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Hence, for |w| <1 and Rw <0, we get

114+ w\™\"
= <
21 —w

Also, since feG,, we get [1*f(¢)| < MB*k* for certain constants M, B> 0.
Hence, we have

m---(m+p—1)

|m+p

<m---(m+p—1).

[T —w

(1 (—I)kf(t)e L2+ )i(] wN gy
Y0

< M'(BY k™ for weD

and certain constants M’, B’ >0,
From (3.7) and (3.8), we obtain

P k k
(F) NS Y = 3 ( )m--~(m+p—!)M%B/)"k“
k=1 k' m=1 m
2p) o1 .
<Mr — ! 2k
p! kgl k! (287K
SCA,’[)W,

for certain constants C, 4>0. |

Let us consider a function f in the space GX= G, G* Using the fact
that the function belongs to the space G,, from Theorem 3.3, we get that
on the left side of the unit disc, the function .%,( f) satisfies

H(Fo( N (W) <CA”p™  for p=0. (3.9)

But, what happens on the right side of the unit disc?. In other words, what
is the analytic function .#,(f)( —w) on the left side of the unit disc like?

Let us consider a related question which will solve the previous one:
Given a functional ue (S, "), and its associated analytic function #p(u),
consider the analytic function g which we obtain from #,(«) by doing a
rotation in the variable, that is, g(w)= Z,(u)(z,w), when z, is a fixed com-
plex number of modulus equal to 1. As we said above, there exists another
functional ve (5;°)’ such that g(w)= Z,(v)(w). The question is: What is
the relation between v and v like? As we said in Section 2, the fractional
power of the Hankel-Clifford transform .# , plays an important role in
answering this (uestion:

LEMMA 34. Let ue(S/°)Y. Let us consider the analytic function
gw)y=F(u)(zow) for z, satisfying |z4| =1 and z, # 1. Then if we put
1420\ . ,
v=(< a °)o+(1—:0)6)*(.z0_0(u)>
we get g(w)=.Z,(v)(w) for we D.
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Proof. From Theorem C, we get for the function g the expression

gow) = (1—2gw) ¥ a, 2w,
where a, = (u, L,(t) e "?>.
From Corollary 4.7 in [D3], we get

14z,
2

fo(v)ﬁn(( )6+(1—:o)é')%(.fm.o(un.

It is straightforward that

1420\ . I —zow
;«,)(( : °>o+.(1—:0)5'>= T

Since £, oL (1) e "*)=ziL(t)e % we get (., o(u) Ly(n)e "
zoa,, and again from Theorem C, it follows that

Fpl I, o)) = (1 —w) Y a,ziw".

n
Hence, the lemma is proved. ||

Now, we return to our question: What is the analytic function
Fp(f)(—w) on the left side of the unit disc like ? Note that from the pre-
vious lemma, we have that the analytic function #,(f)( —w) is very related
to the analytic function %, (#,(/))(w) (because of the equality .¥# | , = #;).
This relation is the key to stating the next corollary, where we prove that
also on the right side of the unit disc, the analytic function Z,(f)(w) (for
J € G?) satisfies (3.9):

COROLLARY 3.5. Let feG: and x> 1. Then there exist constants C,
A >0 such that

(Zp(f NP (w) < CA”p* for p=0and weD
and lim,, _ | Z,(f}{w)=0.
Proof. First of all, as feS™, from Theorem C, it follows that
lim, | #p(f)(w)=0.
Since G2=G,n G* the hypothesis is equivalent to feG, and feG*
Hence, by Theorem 3.3, we have proved the thesis when we D and Rw <0.
Let us consider the function A(r)=#y(f)(¢t) and the functional

g=20"» H(f)=2H(SN0) -6+ HG(S)1)
From Lemma 3.4, we get

FolfN—w)=Fp(g)w)=2H(/NO) + Fp(h)(w).



292 ANTONIO J. DURAN

As fe G*, from Theorem A, it follows that 3, f € G, and since G, is closed
under differentiation, we get he G,. Again, by applying Theorem 3.3, the
proof is finished. §

Now, Lemma 3.1, Corollary 3.5, Theorem C, and Lemma 3.2 give the
main result in this paper:

THEOREM 3.6. Let feL*(0,+x), a21, a,= _f(f fYL,(t)e "*dt, and
Fo( [N w) be as in (3.4). The following conditions are equivalent:

(1)  There exist two constants ¢ >0 and a > 1 such that
la,] < ca n for nz=0.
(it)  The function f belongs to the space G2.
(11}  There exist constants C, A >0 such that
[FPN ) < CAPp*  for p=0and weD
and lim | Z,(f )} w)=

Conversely, given a sequence (a,), satisfying condition (1) or given an
analytic function F on the unit disc satisfying lhe bounds (3.5) and
lim, ., F(w)=0, there exists € G} such that a,= [ f(t}yL,(t)e “*dt for
neN and F,(f)w)=F(w) for we D.

Now, we extend condition (i) of the previous theorem for the generalized
Laguerre polynomials.
Indeed, for 7 > —1, the sequence

am=(1"(_n—t}'—+l}> - Ix f(t)PLi(t)e "*dt (3.10)

" n!
is called the y Fourier—Laguerre coefficients of f.
COROLLARY 3.7. Let feL*0,+oc), y=0, and (a'), be as in (3.10).

Then feG* (x= 1) if and only if there exist two constants ¢>0, a> 1
* ” . 12
(which depend on ) such that 1a'’| <ca """ for all n20.

Proof. Because X, |(})| < oc for any y >0, the proof is the same as that
of Theorem 24 in [D3]. |

Let us consider the sequence space

{(@,), :3a> 1, |[(a,),ll,=sup{|a,a""|} < oo }.
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We can endow this space with an inductive limit topology. Hence, since the
canonical sequence (e, ,), defined by

em, n On. nt

is a basis of that sequence space, using the Closed Graph Theorem for
LF-spaces, we get that the expansion for every function f in the space G?
converges for the topology of G3.

To finish this section, we generalize Theorem 3.6 for the dual spaces
(G3) (x=1).

Since the functions £i(1), e "V wDre G for g > 1, 20, and
we D, we can define the operators % (G) - C™ and #,: (G?) — H(D)
by

L) = (Cu, Li1)D),

Fpu)w)= (u(t), e D witt whnes for weD.

Hence, dualizing parts (i) and (ii) in Theorem 3.6, we get

CoroOLLARY 3.8. The mapping
L:(G3) ~ {(a,), :Ya> 1, |(a,), ], =supila,a "} <)
is an isomorphism between these spaces. (In the space (G2)' we consider the

strong topology and in the sequence space, the Fréchet topology generated by
the seminorms ||-||, for a>1.)

Finally, we characterize the range of the operator %, acting on (GJ)".

COROLLARY 39. Ler H{a, D) (a=1) be the following subspace of
analytic functions on the unit disc,

H{a, D)= {Fe H(D):Ve>0,
LFIl, = sup{|F(w)] e */(1 -t e DY < o},
endowed with the Fréchet topology generated by the seminorms ||-|,, € > 0.

Then, the mapping
Fp:(G2) - H(a, D)

is an isomorphism between these spaces (as in the previous corollary, in the
space (G2)' we consider the strong topology).

Proof. By using Corollary 3.8 and Theorem C, it will be enough to
prove that an analytic function F belongs to the space H(«, D) if and only
if its Taylor sequence (a,), belongs to the sequence space

Iz
{(an)n :Va> l’ H(an)n”u=sup{|ana " | } <X }
n
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(=) Let us write F(w)=>_, a,w". Since Fe H(x, D) and by using the
Cauchy formula, we get for every £>0 a constant ¢, > 0 such that

1 ”n ‘ .
|a,,1<c’a<—> et o 0<r<1and neN.  (3.11)
r

From (3) of [GSI, p. 170], it follows that

k(ﬂflik(l _r)k}

(1701 HERRE el
eftlitt < Cinf T
k dlf

(3.12)

for certain constant C > 0, which does not depend on ¢, r, and d, > 0, which
does not depend on r.
Taking r=n/(n+ k), we get r"(1 —r)*= e *(k*/n*). Hence, from (3.11)
and (3.12), we have
la,| <c, irklf" Yk /ed, n) .

Again, applying (3) of [GSl, p. 170], we conclude that
|a,,| < C’:eum,,l .

(<) From the hypothesis, for all a>1 we get

Fow)l <e, T a™ Iwl"< C, sup{a® " |w|"}  for weD. (3.13)

”n

From (3) of [GSI, p. 170], it follows that

nli L k*n*
a len — e(Zlog ayn |W|" < C |W|" inffl { dk } (314)
k

a

for certain constants C >0, which does not depend on a, n, and d,>0,
which does not depend on n.

Since
1 1 k
g k< _ -
wl™n \<kl°g<|w|>>

1 -k
<Cl—7— f =0,
C<k(l—("‘|)) orall n=0

from (3.13) and (3.14), we get

Ktk — |w|)"}

F(w)| <C, inf !
[F(w)] C(.Hkl { a*

Again applying (3) of GSI1, p. 170], we conclude that

|F(w)| < Cue'Z"’g“""‘"" - lwmle"“*“_ .
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4, APPENDIX

In Theorem 2.6 of [D2], we stated the relation between the spaces G”
and S**, that is, for §> 1, the space G* is contained in the space S*/ 1.
Here, we show that for every =1, the result G = S*# ! is the best
possible, that is, G? is always different from the space S*”~!, and §*/~!
is the smallest space of type S*7, which contains the space G*. To prove
this result, we give an estimate for the analytic function #,(f), when
feS*F or when feG” These estimates are similar to those given in
Theorem 3.3 for the functions in the space G,.

To begin with, we recall the definition of the Gel'fand-Shilov spaces S,
S*7, and S}*, defined on (0, +oc).

Sr={fe€*((0,+)):34, C,>0, Vk, p>0,
sup |47 (1)] < C, Ak}

>0
S*P={fe€ ((0,+c)):3B, C, >0, Vk, p=0,
sup |f5f\P(1)| < C, B p™}

>0
SrP={fe®"((0, +x)):34, B, C>0, Vk, p>0,
sup | t*f (1) < CA* B k*phr}.

>0
A careful study of the proof of the Theorem 3.3 shows that the condition
Rw <0 can be slightly improved:

COROLLARY 4.1. Let feG, and «20. Then for every 8, —1 <0<,
there exist constants C, A>0, which depend on 0 such that if we D and
Rw <0, then

HE (N (w) < CAPp™

for all p=0.

Using Lemma 3.4, we can give an analogous estimate for the functions
in the space G*.

COROLLARY 4.2, Let feG* and B=0. Then for every 8, —1 <8<,
there exist constants C, A>0, which depend on 8 such that if we D and
Rw =0, then

(Ff NP (W) < CArp™”

for all p=0.

640 74.3-5
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Proof. Given a function feGP” consider the functions g(t)=
((28") * (AHL(S)N1), and A(r)= #4(f)(t), and proceed as in the proof of
Corollary 3.5. |

Now, we extend the estimate in the previous corollaries for the functions
in the space S**. To prove it, we use the Cauchy formula. As a conse-
quence, this estimate is stated for the complex numbers in a certain Stolz
angle contained inside the unit disc. It should be noted that the estimates
for the functions in the space G” were proved for the complex numbers in
a half-disc. This difference is the key to proving that the result G# = $*# !
is the best possible.

THEOREM 4.3. Let feS*F, 20, and A, , (—1<0<1, 1 <n) be the
portion of the Stolz angle contained in the half-plane Rw = 0, that is,

1—w
4y, = weD:‘.sz(),] H)<r] .
' 1 —|w|
Then there exist constants C, A >0 (which depend on 6, n) such that
(Fp( N (W) <CA7pP+7 for p=0and wed,,.

(By continuity, these bounds remain true for w=1.)
Proof. As feS** we get
Lf 7 (1)) < MBPp™” (4.1)

for certain constants M, B> 0. Integrating by parts in the expression of the
function #,(f), we have

_ p1 l—w m+ 1
ZNw='T 10 (2555)

it 14w
T
We put
W) ='S F70) (2 —1;"—>
o l+w
and

i ;zv)p Jx f(m(t) o (W2NQ +w) (L =)t gy (4.2)
A 0

glw)= (2
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If Rw =0, from (4.1) and (3.8), we get

p—1 1—w m+ 1\ (p}
(n1)
o))

IR (w) < ),
5 AMABY mP(m 4 1) - (m + p)

m=0
= |1+w|m+p+]

m=0

p—1
<SCy Y. (4BY" mP(m+ p)

m=0

< CAPP(/1+ hyp

for, certain constants C, 4 >0 depending on 6.
From (4.1} and (4.2), it is straightforward that

[1T—w|
|1+ w)

p
g0 < () B (43)
for certain constants C’, B'>0.
To estimate the derivatives of the function g, we use the Cauchy formula.
For every we d, ,, we put [, for the circle with center at w and radius
r=|1—wl|/qpy, where p,=max{l1, 2((1 —0)/(1 +8))}. From the definition
of the Stolz angle, it follows that I', is contained into D. For (e I,., we get

11— <r+|1—w|

— < <l+npy
[w—{| r
11— w| 1+6 6—1 (44)
—w + —
R = Rw— = Rw — 1-lw))z—mo.
” ai—e | M=
Hence, from the Cauchy formula, (4.3), and (4.4), we get
' ¢ ’
Py — | P g(l)
gr0 =l | o
p! g(<)
g__ ———————— e
2ndn (w00t ]
! 1A/ =2 ]
ccwrm ] (k) (1) e
et ) =gl weg '

SC(Cy(1+pyn) By pPrtie

and the theorem is proved. |

Taking into account that 7> ' S** 'n§2=§**" 11 (G,, we obtain
from Corollary 4.1 and Theorem 4.3
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COROLLARY 4.4. Let feS}t* ', az=1, and ¥ (0<8<n/2) be the
portion of the symmetric angle with vertex in | and amplitude 0 contained in
the unit disc, that is,

S=1{weD:|arg(l —w)| <0}
Then there exist constants C, A >0 (which depend on ) such that
(F( NP (W) SCAPp™  for p=0and we ).

The difference between this corollary and Corollary 3.5 should be noted.
Here, we are able to prove the estimate only for the complex numbers in
an angle. If this estimate were proved for all complex numbers in the unit
disc, we would get the equality between the spaces G* and S}* .

Now, we are ready to state the main results in this section. First, for
p =1, we prove that G# £S*# !,

1

LEMMA 4.5, For every B= 1, there exists a function feS™* Y which

does not belong to G.

Proof. Indeed, let g be a ¥ function with support contained in [0, 1]
and satisfying

gr)=pP2rtr for pz0 (4.5)
and

J' e "Vg(x)dx=0. (4.6)

0

Since g has compact support, it follows that g e G,. But from (4.5), we get
g¢ G’ Hence, ge G, and g ¢ G/;. From Corollaries 4.1 and 3.5, there exist
two sequences (w,),, (p,).,» such that (w,), is a sequence of complex
numbers in the unit disc, with lim n 1, and (p,), is a sequence of
nonnegative integers for which

" ox n

HF N T (w, )] = Al plie, (4.7

We put

L4171\ . .
f=<<—:~’>o+(1—i)b’)*(.ﬂ’,;u(g)). (4.8)

“

From (4.6), it follows that (.% ((g))(0)=0, and hence, we get

-
f(r)=<—;—’) (o N+ (1= D(F olg)) (1)



GEL’FAND-SHILOV SPACES 299

Since g e G, from Theorem B, we get that fee"'G". As G < S*# !and
el gHA-1g+P-1 we have feS*/ L

Now, we see that f¢ G”.

From Lemma 3.4, we get #,(f )(w)=F,(g)iw), hence, (4.7) gives

UFp ()" (iw,)] = nnplypa.

So, #p(f)(w) cannot satisfy Corollary 4.2 for 8= —1. So, the lemma is
proved. |

It should be noted that in the previous proof the function 7 in (4.8) can
be changed to f. defined by

142\ .
f=<(—§—) 0+ (1-2) 5') * (S o(8))

for z any complex number in the unit circle different from 1. From
Theorem B, the function f. satisfies f.ee!!/2W I+ =G byt f ¢ GP.
Thus, we have proved that for any > 1 and any complex number z in the
unit circle different from 1, the space G” is not closed under multiplication
by e(lcf‘Z)l(l + )1 ~:n1_

Now, we prove that S*# ' is the smallest space of type S*7, which
contains the space G”.

LEMMA 4.6. Let > 1. Then for every y < f there exists a function f e G"
which does not belong 10 S*77 .

Proof. Leta>l,anday= ~Y,.,a " *_Let us consider the function F(w)
=do+ P 51 a “mywn We can write F(w)= (1 —w) Y.l a "y W,
Hence, by Lemma 3.2 and Theorem 3.6, there exists a function /'€ G/ such
that F=%,(f). So, feG".

Given y < 8, from Theorem 4.3, to prove that f¢ S*7 ! it is enough to
prove that there exist constant C, A >0 such that

IF”"(I )| > CA”pﬂ”.
But

L

IFipl(l)lz Z nin—1)---{(n—p+1)a "

nzp

>3 (n—pya’

nzp

>(n—pya"’

for all n such that n> p. Taking n= [ p”]+ p, the lemma is proved. |



300

[A]

(D]
[D2]
{D3]
[D4]

[EG]

(Gu]

[GS1]
[GS2]
[Ka]

[K]
(s]

(Sc]
(2]

ANTONIO J. DURAN

REFERENCES

A. AVANTAGGIATI, S-spaces by means of the behavior of Hermite—Laguerre
coeflicients, Un. Mat. Ital. A Boll. 4 (1985), 487-495.

A.J. DuraN, Laguerre expansions of tempered distributions and generalized
functions, J. Math. Anal. Appl. 150 (1990), 166-180.

A.J. DuraN, Gel'fand-Shilov spaces for Hankel transform, /ndag. Math. 3 (1992),
137-151.

A.J. Duran, The analytic functionals in the lower half plane as a Gel'fand-Shilov
space, Math. Nachr. 153 (1991), 135-167.

A.J. Duran, A bound on the Laguerre polynomials, Stud. Math. 100 (1991),
169-181.

S.J. L. EuNDHOVEN AND J. DE GRAAF, Analyticity spaces of self-adjoint operators
subjected to perturbations with applications to Hankel invariant distribution spaces,
SIAM J. Math, Anal. 17 (1986), 485-494.

M. GuiLLEMOT-TEISSIER, Développements des distributions en séries de fonctions
orthogonales. Series de Legendre et de Laguerre, Ann. Scuola Norm. Sup. Pisa 25
(1971), 519-573.

I. M. GEL'FAND AND G. E. SHiLOv, “Les distributions,” Vol. 2, Dunod, Paris, 1965.
1. M. GEL'FAND AND G. E. SHiLov, “Les distributions,” Vols. 3, 4, Dunod, Paris, 1965.
A. 1. KasHpirovskl, Equality of the spaces S and S, S*, Functional Anal. Appl. 14
(1980), 129.

J. KOREVAAR, Pansions and the theory of Fourier transforms, Trans. Amer. Math. Soc.
91 (1959), 53-101.

L. ScHwaRTZ, “Théorie des distributions,” Hermann, Paris.

I.J. SCHWATT, “Operations with Series,” Chelsea, New York.

A. ZAYED, Laguerre series as boundary values, SIAM J. Math. Anal. 13 (1982),
263-279.



